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Abstract. The James-Stein shrinkage estimator was proposed in the
field of Statistics as an estimator of the mean for samples drawn from a
Gaussian distribution and shown to dominate the maximum likelihood
estimator (MLE) in terms of the risk. This seminal work lead to a flurry
of activity in the field of shrinkage estimation. However, there has been
very little work on shrinkage estimation for data samples that reside
on manifolds. In this paper, we present a novel shrinkage estimator of
the Fréchet Mean (FM) of manifold-valued data for the manifold, Pn, of
symmetric positive definite matrices of size ‘n’. We choose to endow Pn

with the well known Log-Euclidean metric for its simplicity and ease of
computation. With this choice of the metric, we show that the shrinkage
estimator can be derived in an analytic form. Further, we prove that the
shrinkage estimate of FM dominates the MLE of the FM in terms of the
risk. We present several synthetic data examples with noise along with
performance comparisons to estimated FM using other non-shrinkage
estimators. As an application of shrinkage FM-estimation to real data,
we compute the average motor sensory area (M1) tract from diffusion MR
brain scans of controls and patients with Parkinson Disease (PD). We
first show the dominance of the shrinkage FM estimator over the MLE
of FM in this setting and then perform group testing to show differences
between PD and controls based on the M1 tracts.

1 Introduction

In medical imaging, data taking the form of symmetric positive-definite (SPD)
matrices are quite commonly encountered, for example, diffusion tensors, Cauchy
deformation tensors, conductance tensors, etc. In such cases, data processing
methods must perform geometry-aware computations, i.e., employ methods that
take into account the nonlinear geometry of the data space. In medical imaging
and many other domains, it is quite common to compute summary statistics
from the data to characterize population groups. The most common and sim-
ple summary statistic is the mean. When the data space is nonlinear such as
in the case of non-flat Riemannian manifolds, sample Fréchet mean (FM) is
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the statistic we seek to compute. Sample FM is defined as the minimizer of the
sum of squared geodesic distances from the data samples to the unknown center.
This minimization is solved traditionally using the Riemannian gradient descent.
Recently however, provably convergent and efficient recursive algorithms have
been presented for computing the sample FM on a variety of Riemannian mani-
folds [4,10,17,22]. In the Euclidean space Rn with the usual metric, the sample
FM is simply the sample mean of the observations and the James-Stein esti-
mator [11], or a shrinkage estimator, is an estimator that is well known to be
uniformly better (in terms of risk) than the sample mean when the observa-
tions are assumed to be normally distributed. Hence, the goal of this paper is
to develop a novel shrinkage estimator for data residing on the space of SPD
matrices.

The James-Stein estimator originated from the following problem. Given
Xi

ind∼ N
(
µi,σ2

)
, i = 1, . . . , p where p > 2 and σ2 is known, what is a good

estimator for µi under a quadratic loss? An intuitive answer would be the MLE
Xi. However, Stein [20] proved that the MLE is inadmissible, and provided a
class of estimators that dominate the MLE. Later, James and Stein [11] further
sharpened the result and proposed the following estimator,

(
1 − (p − 2)σ2

∥X∥2

)
Xi (1)

for µi, whereX = [X1, . . . , Xp]
T . This estimator is referred to as the James-Stein

estimator or the shrinkage estimator.
Ever since then, researchers have been trying to generalize this shrinkage phe-

nomenon and apply it to different problems. For example, authors of [14] and
[5] report a shrinkage estimator for a covariance matrix and authors of [3] and
[24] generalized the shrinkage estimator to other family of distributions. From
an applications perspective, authors of [15] developed a James-Stein version of
Kalman filter which yielded robust parameter estimates in the presence of out-
liers in the data. In [16], authors proposed a shrinkage estimator to estimate
the mean function in the Reproducing Kernel Hilbert space (RKHS). Shrink-
age estimators for multi-task averaging problems was addressed recently in [7].
In [8], authors presented an interesting application of James-Stein estimation
to the problem of geodesic regression in the space of diffeomorphisms to fit a
generative model to images acquired over time. They showed that the shrinkage
estimator of the momentum parameter estimated from cross-sectional scans and
used to regularize the individual geodesic model improves prediction of the indi-
vidual generative model. In all of the works cited above, the domain of the data
has invariably been a vector space and as mentioned earlier, many applications
naturally encounter data residing in non-Euclidean spaces. Hence, generalizing
the shrinkage estimator to non-Euclidean spaces is a worthwhile pursuit. In this
work, we focus on one such generalization of shrinkage estimation to the Rie-
mannian manifold of SPD matrices.

In this paper, we derive a shrinkage estimator on the space of SPD matrices
using a Bayesian framework for developing shrinkage estimators presented in
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Xie et al. [25] and show that the proposed estimator is asymptotically optimal.
We design synthetic experiments to demonstrate that the proposed estimator
is better (in terms of risk) than the widely used Riemannian gradient descent
based estimator and the recently developed inductive/recursive FM estimator
in [10]. Further, we also apply the shrinkage estimator to find group differences
between patients with Parkinson Disease and Controls.

Rest of this paper is organized as follows. In Sect. 2, we will present relevant
background material about the space of SPD matrices and shrinkage estimation.
The main result is presented in Sect. 3. Synthetic and real data experiments
depicting the dominance of our shrinkage estimator of FM over MLE of FM are
presented in Sect. 4. Finally, we conclude in Sect. 5.

2 Preliminaries

This section contains a review of some background differential geometry and
statistics material that will be needed in the rest of the paper.

2.1 Geometry of Pn

We now present basic Riemannian geometry of symmetric positive definite (SPD)
matrices denoted by Pn and refer the reader to [9,23] for details. The manifold
Pn of n × n SPD matrices is defined as, Pn = {X = (xij)1≤i,j≤n|X = XT ,∀v ∈
Rn, v ̸= 0, vTXv > 0}. The most commonly encountered example of SPD matri-
ces is the covariance matrix (with non-zero eigenvalues), which is widely used
in medical imaging, statistics, finance, computer vision and other fields. On Pn,
the most widely used Riemannian metric is given by

⟨U, V ⟩X = tr(X−1/2UX−1V X−1/2) (2)

for X ∈ Pn, U, V ∈ TXPn. The most important property of this metric the GL-
invariance, i.e. for g ∈ GL(n), ⟨U, V ⟩X = ⟨gUgT , gV gT ⟩gXgT . Hereafter we refer
this metric as GL-invariant metric to avoid confusion. With the GL-invariant
metric, the induced geodesic distance between X,Y ∈ Pn is given by (see [23])

dGL(X,Y ) =
√
tr((log(X−1Y ))2) (3)

where log is the matrix logarithm. Since this distance is induced from the
GL-invariant metric in Eq. (2), it is naturally GL-invariant i.e. dGL(X,Y ) =
dGL(gXgT , gY gT ).

More than a decade ago, Arsigny et al. [1] proposed the Log-Euclidean metric
on the manifold Pn. This metric makes Pn a flat Riemannian manifold. The
geodesic distance dLE : Pn × Pn → R induced by the Log-Euclidean metric has
a particularly simple form,

dLE(X,Y ) = ∥logX − log Y ∥F .
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Since for X ∈ Pn, logX ∈ Sym(n) = {X ∈ GL(n)|X = XT } and Sym(n) is
isomorphic to R

n(n+1)
2 , it is convenient to use the map vecd : Sym(n) → R

n(n+1)
2

defined in [19]. For Y ∈ Sym(n),

vecd(Y ) =
[
y11, ..., ynn,

√
2(yij)i<j

]T
.

For example,

Y =

⎡

⎣
y11 y12 y13
y12 y22 y23
y13 y23 y33

⎤

⎦ , vecd(Y ) =
[
y11 y22 y33

√
2y12

√
2y13

√
2y23

]T
.

To simplify the notation, for X ∈ Pn, we denote X̃ = vecd(logX) ∈ R
n(n+1)

2 .
From the definition of vecd, it is easy to see that dLE(X,Y ) = ∥X̃ − Ỹ ∥.

Given X1, . . . , XN ∈ Pn, we denote the sample FM with respect to the two
geodesic distances given above by,

X̄GL
N = argmin

M∈Pn

1
N

N∑

i=1

d2GL(Xi,M) and (4)

X̄LE
N = argmin

M∈Pn

1
N

N∑

i=1

d2LE(Xi,M) = exp

(
1
N

N∑

i=1

logXi

)
. (5)

2.2 The Log-Normal Distribution on Pn

To model observations residing directly on Pn, Schwartzman [18] proposed the
Log-Normal distribution which can be viewed as a generalization of the Log-
Normal distribution on R+ to Pn.

Definition 1. Let X be a Pn-valued random variable. We say X follows a Log-
Normal distribution with mean M ∈ Pn and covariance matrix Σ ∈ Pn(n+1)/2,
or X ∼ LN(M,Σ) if

X̃ ∼ N(M̃,Σ)

Important properties for this distribution are studied in [19]. The following
proposition from [19] will be useful subsequently in this work. The proof of this
proposition is straightforward and hence omitted.

Proposition 1. Let X1, . . . , XN
i.i.d∼ LN(M,Σ). Then MLEs of M and Σ are

M̂MLE = X̄LE
N and Σ̂MLE = 1

N

∑
i

(
X̃i − ˜̂MMLE

)(
X̃i − ˜̂MMLE

)T

. The MLE

of M is the sample FM under the Log-Euclidean metric.
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2.3 Bayesian Formulation of the Shrinkage Estimation in Rn

The shrinkage estimator arose from a simultaneous estimation problem namely:
estimate µi given Xi

ind.∼ N(µi,σ2), where i = 1, . . . , p, p > 2, σ2 is known. The
seminal work of James and Stein [11] showed that the information contained in
Xj , j ̸= i can help to improve the estimation of µi. Later on, Efron and Morris
[6] formulated the same problem using a Bayesian model and gave an empirical
Bayes interpretation to the shrinkage estimator. The corresponding Bayesian
hierarchical model is given below:

Xi|θi
ind∼ N(θi, A), i = 1, . . . , p

θi
i.i.d∼ N(µ,λ)

where, A is known and µ and λ are unknown. The maximum a posteriori (MAP)
estimate for θi is given by,

θ̂λ,µ
i =

λ

λ +A
Xi +

A

λ +A
µ. (6)

The unknown parameters λ and µ can be estimated by empirical Bayes MLE
(EBMLE) or an empirical Bayes method of moments (EBMOM). For the special
case of µ = 0, the EBMLE and EBMOM produce the same estimator which is
the James-Stein estimator (1). A natural question would then arise: is there
an optimal shrinkage estimator, i.e. how to estimate λ and µ such that they
are optimal within such a class of estimators. The optimality here is defined in
terms of the risk function, or the expected value of the loss function R(θ̂, θ) =
EθL(θ̂(X), θ), where θ̂(X) is an estimator of θ based on the observation X. An
estimator θ̂ of θ is said to be optimal if R(θ̂, θ) ≤ R(θ̂⋆, θ) for all θ. Hence, the
optimal choice of λ and µ are given by,

λ̂opt, µ̂opt = argmin
λ,µ

R(θ̂
λ,µ

,θ).

where, θ = [θ1, . . . , θp]T and θ̂
λ,µ

= [θ̂λ,µ
1 , . . . , θ̂λ,µ

p ]T . However, since R(θ̂
λ,µ

,θ)
involves θ, this problem is ill-posed. Motivated by Stein’s unbiased risk estimate
(SURE) [21], we minimize the unbiased risk estimate SURE(λ, µ) instead of the
risk where,

Eθ [SURE(λ, µ)] = R(θ̂
λ,µ

,θ).

Hence,
λ̂SURE, µ̂SURE = argmin

λ,µ
SURE(λ, µ)

This approach has been used to derive estimators for different models. For exam-
ple, Xie et al. [25] derived the (asymptotically) optimal shrinkage estimator for
heteroscedastic hierarchical model and their result is further generalized by [12]
and [13].
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3 Theory

We are now ready to present the main theoretical results of this paper involving
a Bayesian formulation of the shrinkage estimator of M , the FM of Log-Normal
distribution on Pn and a theorem on the dominance of our shrinkage estimator
over the MLE of M on Pn endowed with the Log-Euclidean metric. The choice
of Log-Euclidean metric here over other metrics is dictated by (i) computational
efficiency of this metric over other choices and (ii) the existence of a closed form
expression for the shrinkage estimator (to be derived here).

We model the data in this work as follows:

Xij |Mi
ind∼ LN(Mi, AiI), j = 1, . . . , N

Mi
i.i.d∼ LN(µ,λI), i = 1, . . . , p

where Ai’s are known and µ and λ are unknown. Our goal in this paper is
to develop a shrinkage estimator for Mi which is better than the MLE, X̄LE

i =
exp(N−1

∑
j logXij), in terms of risk. Given the above model, the MAP estimate

for Mi is given by,

M̂λ,µ
i = exp

(
λ

λ +Ai
log X̄LE

i +
Ai

λ +Ai
logµ

)
. (7)

Let M = [M1, . . . ,Mp] and M̂
λ,µ

= [M̂λ,µ
1 , . . . , M̂λ,µ

p ]. Using the loss function,

l(M̂
λ,µ

,M) = 1
p

∑
i d

2
LE(M̂

λ,µ
i ,Mi), the risk function becomes,

R(M̂
λ,µ

,M) = E

[
1
p

p∑

i=1

d2LE(M̂
λ,µ
i ,Mi)

]

=
1
p

p∑

i=1

Ai

(λ +Ai)2

(
Ai∥ logµ − logMi∥2 +

qλ2

N

)

where q = n(n+1)/2. Since λ and µ are unknown, our goal is to find the optimal
λ and µ in the sense that the risk is the smallest for all M . Using the formalism
given in Sect. 2.3 for approximating the risk function by SURE, we have,

SURE(λ,µ) =
1
p

p∑

i=1

Ai

(λ +Ai)2

(
Ai∥ log X̄LE

i − logµ∥2 + q(λ2 − A2
i )

N

)
.

Hence, the choices of λ and µ would be

λ̂SURE, µ̂SURE = argmin
λ,µ

SURE(λ,µ)

= argmin
λ,µ

1
p

p∑

i=1

Ai

(λ +Ai)2

(
Ai∥ log X̄LE

i − logµ∥2 +
q(λ2 − A2

i )
N

)
.
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The proposed shrinkage estimator, SURE-FM, for Mi is

M̂SURE
i = exp

(
λ̂SURE

λ̂SURE +Ai

log X̄LE
i +

Ai

λ̂SURE +Ai

log µ̂SURE

)
. (8)

Since λ̂SURE, µ̂SURE are the minimizers of SURE(λ,µ) instead of
R(M̂

λ,µ
,M) = E

[
l(M̂

λ,µ
,M)

]
, we show in Theorem 1 that SURE(λ,µ) is

a good approximation of l(M̂
λ,µ

,M).

Theorem 1. Assume that,

(A) lim supp→∞
1
p

∑
i A

2
i < ∞

(B) lim supp→∞
1
p

∑
i Ai∥ logMi∥2 < ∞

(C) lim supp→∞
1
p

∑
i ∥ logMi∥2+δ < ∞ for some δ > 0.

Then,
sup

λ>0,∥ logµ∥<maxi ∥ log X̄LE
i ∥

|SURE(λ,µ) − l(M̂
λ,µ

,M)| → 0

in probability as p → ∞.

Proof. Let X̃LE
i = vecd(log X̄LE

i ), µ̃ = vecd(logµ), M̃λ,µ
i = vecd(log M̂λ,µ

i ),
M̃i = vecd(logMi). Then,

SURE(λ,µ)=
q∑

j=1

1

p

p∑

i=1

Ai

(λ +Ai)2

(
Ai

(
(X̃LE

i )j − (µ̃)j
)2

+
λ2 − A2

i

N

)
=

q∑

j=1

SUREj(λ, (µ̃)j)

and

l(M̂
λ,µ

,M) =
q∑

j=1

1
p

p∑

i=1

(
(M̃λ,µ

i )j − (M̃i)j
)2

=
q∑

j=1

lj .

Hence by Theorem 5.1 in [25] we have,

sup
λ>0,∥ log µ∥<maxi ∥ log X̄LE

i ∥
|SURE(λ,µ) − l(M̂

λ,µ
,M)|

≤
q∑

j=1

sup
λ>0,∥ logµ∥<maxi ∥ log X̄LE

i ∥
|SUREj(λ, (µ̃)j) − lj | → 0

in probability as p → ∞. ⊓/

In next theorem, we will show that our proposed shrinkage estimator is
asymptotically optimal in the sense that its risk is asymptotically smaller than
any other estimator of the form (7).
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Theorem 2. Assume that (A), (B), (C) in Theorem 1 hold. Then,

lim
p→∞

[R(M̂
SURE

,M) − R(M̂
λ,µ

,M)] ≤ 0

Proof. Since

l(M̂
SURE

,M) − l(M̂
λ,µ

,M) = l(M̂
SURE

,M) − SURE(λ̂SURE, µ̂SURE)

+ SURE(λ̂SURE, µ̂SURE) − SURE(λ,µ)

− l(M̂
λ,µ

,M) + SURE(λ,µ)

≤ 2 sup |SURE(λ,µ) − l(M̂
λ,µ

,M)|,

from Theorem 1, we have

lim
p→∞

[
l(M̂

SURE
,M) − l(M̂

λ,µ
,M)

]
≤ 0.

Hence,

lim
p→∞

[
R(M̂

SURE
,M ) − R(M̂

λ,µ
,M )

]
= lim

p→∞
E

[
l(M̂

SURE
,M ) − l(M̂

λ,µ
,M )

]
≤ 0.

⊓/

4 Experiments

In this section, we present both synthetic and real data experiments to show
that the SURE-FM is better than the MLE of the FM on Pn in terms of risk.

4.1 Synthetic Data Experiments

In this subsection, we will demonstrate the dominance of the SURE-FM over
MLE of the FM of Log-Normal distribution on Pn using synthetically generated
data. We compare the performance of the three different estimators namely, (i)
SURE-FM, (ii) MLE of FM, denoted FM.LE and (iii) sample FM using the
GL-invariant metric (using the recursive algorithm in [10]), denoted FM.GL.
We use the following loss function in our comparisons of accuracy, l(M̂,M) =
d2LE(M̂,M). The lower the loss, the better the estimator. The procedure is shown
in Algorithm 1 and in all of our experiments we set m = 1000.
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Algorithm 1. Procedure for synthetic data experiment on P3.
Input: sample size N , variance λ, dimension p
Output: RLE, RGL, RSURE

1 for k = 1 to m do
2 Generate M1, ...,Mp

i.i.d∼ LN (I,λI)
3 Generate A1, ..., Ap ∼ Uniform(1, 5)
4 Generate Xij ∼ LN(Mi, AiI), j = 1, ..., n, i = 1, ..., p
5 Compute X̄GL

i , X̄LE
i , and M̂SURE

i in (4), (5), and (8)
6 Compute the loss lLEk = l(X̄LE,M), lGL

k = l(X̄GL,M), and

lSURE
k = l(M̂

SURE
,M).

7 Compute RLE = 1
m

∑
k l

LE
k , RGL = 1

m

∑
k l

GL
k , and RSURE = 1

m

∑
k l

SURE
k .

In our experiments, we chose λ = 1, 2, 4, n = 3, 5, 10, 20, and p =
50, 100, 150, 200 to see how the performance changes under varying parameter
values. The results are shown in Fig. 1. The percentages of improvement range
from 20% to 40% under varying conditions. It is evident that the SURE-FM
yields smaller average loss compared to the other two estimates of FM in most
of the cases. In Fig. 2, we show the computational cost for different estimators.
As discussed in [1], the Log-Euclidean metric based sample FM computation is
much more efficient than the GL-invariant based sample FM computation. The
SURE-FM is slightly slower than the FM.LE computation because of an extra
optimization step that is involved.

λ = 1 λ = 2 λ = 4

p
=
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p
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p
=
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p
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200
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A
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Fig. 1. The average loss for the three different estimators. Results for λ variation are
shown across the columns and varying dimension p are shown across the rows.
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Fig. 2. The average time (on a log scale) taken for computing the three different
estimators. Results for λ variation are shown across the columns and varying dimension
p are shown across the rows.

4.2 Real Data Experiments

For the real data experiments, we test the performance of SURE-FM on the
diffusion MRI datasets. The data consists of 50 patients with Parkinsons disease
(PD) and 44 control cases (CON). The parameters of the diffusion image acqui-
sition sequence were as follows: repetition time=7748ms, echo time=86ms,
flip angle= 90, # of diffusion gradients: 64, field of view=224 224mm, in-plane
resolution=2mm isotropic, slice-thickness= 2mm, SENSE factor= 2.

We extract the motor sensory area fiber tracts (M1 fiber tracts) from each
member of the two groups (PD and CON) using the FSL software [2] and each
tract here spans across 33 voxels for the left hemisphere tract and 34 voxels
for the right hemisphere tract respectively. We then fit diffusion tensors to each
voxel along each of the tracts to obtain 33 (34) (3 × 3) SPD matrices. We then
compute the FM tract for each group (CON and PD). The FM tract here also
has 33 (34) diffusion tensors along the tract. We will use these FMs computed
from the full population of each group as the ‘ground truth’. Then, we ran-
domly draw a subsample of size N = 3, 5, 10, 20 from each group (PD and CON)
and compute the FM.LE, FM.GL, and SURE-FM of each group for the afore-
mentioned subsample. We compare the performance of different estimators by
the distance between the estimator and the ‘ground truth’ FMs. We repeat the
experiment for m = 1000 random draws of subsamples and report the average
distances. The results are shown in Table 1.
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Table 1. The average distances from the sub-
sample FMs and subsample SURE-FM to the
population FM.

N 3 5 10 20

FM.LE 0.0827 0.0519 0.0231 0.0097

FM.GL 0.0814 0.0509 0.0224 0.0094

SURE-FM 0.0738 0.0466 0.0211 0.0092

The result shows that the SURE-
FM dominates the MLE estimates
of FM. As the sample size increases,
the improvement is less significant
which is consistent with the observa-
tions on synthetic data experiments
in Sect. 4.1.

Finally, we apply the SURE-FM
to find group differences between
PD and CON data (described above) based on the M1 fiber tracts on both
hemispheres of the brain. We use permutation testing to assess the group dif-
ferences. The test statistic here is the difference of the SURE-FM of the two
groups denoted by dSURE-FM. We repeat the permutation step 10,000 times and
recorded the differences of SURE-FM dSURE-FM

i , i = 1, . . . , 10, 000. The p-value
of 0.042 is obtained as a fraction of times that dSURE-FM < dSURE-FM

i . This low
p-value is indicative of the significant difference found between the two groups
using SURE-FM.

5 Discussion and Conclusions

In this paper, we presented a Bayesian formulation to generalize shrinkage esti-
mation from Rn to the manifold of SPD matrices and proved that it dominates
the MLE of the FM in terms of risk The shrinkage factor and the shrinkage tar-
get are obtained by minimizing the Stein’s unbiased risk estimate (SURE). Our
theoretical results were derived using the Log-Euclidean metric, which is easy to
compute and easy to manipulate formulae in our quest for the shrinkage estima-
tor on Pn. We showed experimentally on synthetic and real data that SURE-FM
is better than the sample FM estimates computed using the Log-Euclidean and
the GL-invariant metrics respectively. The experiments depicted the dominance
of the SURE-FM over MLE estimates as expected in the small sample size sce-
narios. This scenario is very pertinent to the medical imaging domain where one
is faced with small sample population size but very high dimensional feature
spaces. Thus, we envision that the research reported here can prove to be quite
useful for statistical inference in such settings.

As is well known, the Log-Euclidean metric is not affine invariant and in some
applications, such a property might be useful. However, from our preliminary
attempts, we found it to be very challenging and almost intractable to derive
a closed form solution for the estimator. Our future efforts will therefore focus
on using symbolic manipulation tools to explore the possibility of tackling this
problem. In parallel, we are also exploring formulations of shrinkage estimators
for other manifolds commonly encountered in medical imaging applications.
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